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1. Introduction 

Photon Doppler Velocimetry (PDV) is an experimental technique that estimates 
the velocity with which a reflector is moving by examining the Doppler shift of 
light scattered from its surface.1,2 The fundamental physics underpinning this 
technique are a direct extrapolation of those recognized by Christian Doppler in 
1842.3 Recently, academics studying within the field of shock physics recognized 
that the invent of fiber-based lasers, optical circulators, and fast digitizers allowed 
for one to make a compact system capable of measuring the Doppler shift from 
reflectors utilizing light within the infrared portion of the spectrum  
(λ = 1.55 μm).1 These systems operate with subnanosecond temporal response 
and can measure velocities ranging from approximately zero to upwards of 10 
mm/µs. Also, depending on the analysis method, it is not necessary to ensure 
coherence of the scattered light throughout the measurement. In a practical sense, 
this means that one can make measurements from many scattering centers, each 
with differing velocities, simultaneously, such as that which occurs when a small 
amount of particles are ejected from an accelerated free surface.  

Deployment of these systems throughout Army research facilities is becoming 
very popular because of the technique’s versatility and applicability to measure 
many velocities that the Army is interested in: floor accelerations due to an under-
vehicle mine blast;4 material deformations from a bullet impact;5 maximum tip 
velocities of a jet formed from detonation of a shaped charge,6 and so forth. The 
technique does pose limitations, such as only being capable of making a velocity 
measurement of a single point, but it is compatible with silicon detector based 
techniques such as optical photography or digital image correlation, which can 
provide full field-of-view. One limitation of the technique that this report aims to 
address is the capability to predict how much light will be scattered from the 
reflecting surface during a dynamic event. This is not a simplistic problem, as in 
some scenarios the surface may undergo a shock induced phase change or a 
chemical reaction. In these cases, the intensity of light being scattered is 
dependent on the changes that the material index of refraction undergoes, which 
may or may not be predictable. However, when accelerations of the reflecting 
surface are insufficient to cause the surface to yield across its entirety, it is 
possible to provide general rules guided by empirical measurements, to suggest 
what intensity of light will be scattered at varying angles. 

Figure 1 depicts a schematic of a PDV system, where f0 represents a path in which 
the light has the original frequency, fd represents a path in which the light has 
been Doppler shifted, and u is the velocity of the moving reflector. When the light 
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reflected from the moving surface is recombined with light from the original 
laser, a beat frequency is generated. Our ability to resolve the moving reflector’s 
velocity relates directly to how well we can resolve the beat frequency: 

 𝑓𝑓𝑏𝑏~𝑓𝑓0 ∗
2𝑢𝑢
𝑐𝑐

 (1) 

 

Fig. 1 A schematic of a PDV system.1 

where fb is the beat frequency and c is the speed of light. In the practical case 
where our dynamic range is limited by the bit-depth of the digitizer, best 
resolution occurs where the peak-to-valley magnitude of the beat frequency 
changes the greatest percentage of the full dynamic range. Figure 2 depicts 
example beat frequencies generated by combining 2 sinusoidal waves with 
frequency of the one reduced 2% from that of the original. In panel A, the 
sinusoidal waves had the same amplitude; in panel B the one sinusoidal wave had 
an amplitude equal to one-half the original; and in panel C the one sinusoidal 
wave had an amplitude equal to one-tenth the original. It becomes obvious that in 
the case where the amplitudes are nearest to equal (panel A), that the percent 
change of the dynamic range is the greatest (100% when exactly matched), and 
lessens as the amplitudes of the 2 waves differ. Therefore, when making PDV 
measurements, we desire to predict the amplitude of the reflected light so that we 
can select the amplitude of the unshifted light that we combine at the detector. 
This is accomplished in practice by adjusting an attenuator to control the intensity 
of unshifted light.  
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Fig. 2 Example of beat frequencies generated by adding 2 sinusoidal waves in which the 
frequency of the one wave was reduced by 2% from the original. In example A the sinusoidal 
waves had the same amplitude, in example B the one sinusoidal wave had an amplitude 
equal to 1/2 the original, and in example C the one sinusoidal wave had an amplitude equal 
to 1/10 the original. 

The intention of the work described in this report is to provide quantified surface 
reflection measurements of 1.55-μm light from numerous materials and surface 
finishes to help predict the reflected intensity of Doppler shifted light one can 
expect in scenarios where the entire surface does not yield or undergo a phase or 
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chemistry change. The data are summarized over a range of angles from normal to 
80°. Finally, the surface preparations are characterized using optical microscopy 
and surface profilometry, and generalizations are concluded about how surface 
texture relates to surface reflections for the different materials. 

2. Experimental 

To quantify potential PDV surface reflections, materials with multiple surface 
preparations were illuminated with laser light, and the reflected signature was 
measured as a function of angle with respect to the surface normal. To replicate 
the movement of a surface that occurs in PDV measurements, the samples were 
mounted to the end of a rod that was coupled to the cone of a speaker. The 
speaker was issued a 50-Hz frequency, which oscillated the surface over a 
distance on the order of 0.5 mm while the measurement was acquired. The mean 
value of the reflected power was reported.  

During the acquisitions, the sample surfaces were illuminated with 0.0125 W of 
1.55-μm light that was generated from an IPG ytterbium fiber laser (model ELR-
2-1550-LP-SF). The light was projected to the surfaces through open air using a 
graded index of refraction lens pigtail (AC Photonics 1CL15A070LSD01) that 
was mounted approximately 60 mm from the material surfaces. The lens system 
generated a collimated beam with a 0.5-mm spot diameter. A Coherent Field Mate 
paired with an OP-2 IR Germanium optical sensor was placed approximately  
50 mm behind, and 1.5° above the lens, which measured the total reflected power 
of the light with ±1-nanowatt resolution.  

The entire system was mounted on a circular translating track so that 
measurements of materials prepared with multiple finishes could be assessed at 
any angle. The samples of varying thickness were oriented at the center of the 
circular track’s 152.4-mm radius using a translation stage to ensure that the 
illuminated spot remained localized as the incident angle changed. For 
practicality, measurements of the incident and reflected light were acquired using 
5° increments to form curves of reflected power versus angle for each finish. 
Figure 3 shows an optical photograph of the setup used to acquire the 
measurements at normal and 45° incidences. 
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Fig. 3 Optical photograph of the setup used to acquire the measurements at normal and 45° 
incidences. In these photographs, a visible red laser was used so the illumination spot on the 
sample can be visualized. In the real experiments, an infrared laser was used. 

Surface preparation depended on the material being tested. Generally, specimens 
were prepared with a particular surface finish in nominally 75- × 75-mm slabs for 
uniformity of the finish. The material was then cut to 10- × 10-mm squares for 
testing, which allowed ample room so that the measurements were not corrupted 
by edge effects. Characterization of the surface texture was documented using 
optical microscopy and surface profilometry. The optical microscopy was 
acquired using an AmScope 10–40× stereo microscope fitted with a 5-megapixel 
charge coupled device (CCD) camera and IS Capture software. The surface 
profilometry was accomplished using a Phase II+ SRG-4500 surface roughness 
tester paired with a diamond stylus. This tester was capable of measuring surface 
deviations of 0.01 ± 40 µm with 10% accuracy and 6% repeatability. Reported 
surface parameters include the roughness average, Ra, the root mean square 
roughness, Rq, the average maximum height of the profile, Rz, and the spacing of 
profile irregularities, Rs, as defined by the American Society of Mechanical 
Engineers Standard.7 
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3. Surface Finishes 

As-is: This finish may include significant surface oxidation as most of the 
materials were acquired from legacy stocks that were stored in 
nonenvironmentally controlled warehouses. Materials were cut using a horizontal 
saw that flowed Cimcool Cimtech 495 undyed metalworking fluid. The fluid was 
removed using compressed air and evaporation. 

Machined (Fly Cutter): As-is material was prepared with a machined finish using 
a hand ground, 60°-triangular shaped, tool-steel bit. The bit, which was mounted 
using a 55-mm radius, was spun at 800 revolutions-per-minute (rpm) while the as-
is material was fed under it at a rate of 1.27 mm/s (3 inches/min). 

Painted: As-is materials were coated with 2 coats of automotive gray enamel 
primer (flat). The paint was spray applied on from a 12-oz aerosol can using 2 
coats with 15-min intercoat cure time. 

Sandblasted: As-is materials were blasted with 80-grit garnet propelled by 80-psi 
compressed air using random motions until visual inspection identified complete 
removal of oxidized surfaces.  

Sanded: As-is or surface ground materials were hand sanded using a “figure-8” 
pattern with 240 3M Wetordry Tri-M-ite A weight paper. To apply the finish, the 
samples were held in a pup-fixture while the “figure-8” motion was repeated 40 
times.   

Saw cut: As-is material cut using a band saw with appropriate toothed blade. 

Ground surface: As-is material ground using a Chevalier FSG-3A818 surface 
grinding machine. The finished surface was prepared using an approximately  
125-mm-diameter silicon carbide grinding wheel spinning at 2,850 rpm while the 
material was fed under it at 500 mm/min and 3-mm lateral steps. 

Waterjet cut: As-is material cut using a Flow International two axis water jet. The 
water jet used Barton Abrasive 80 HPA garnet and a 50 horsepower intensifier 
pump, which pressurized the water to 65,000 psi for cutting.  

4. Results and Discussion 

The Table summarizes the materials and surface finishes from which reflected 
power measurements were made. Figures 4–7 show compilations of reflected 
power off of metals as a function of surface finish. The individual power 
reflectance for all materials, along with surface microscopy and surface 
profilometry parameters can be found in the appendixes assigned within the 
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Table. In all cases, the law of reflection coupled with a coefficient of reflection is 
sufficient to explain the results obtained. When a surface is finished with a 
smooth, flat finish the reflection pattern tends toward that of a specular reflector. 
When the finish is textured, the reflection pattern tends toward a diffuse reflection 
(Fig. 8).  

Table Summary of materials and finishes measured 

Material As-
is 

Fly-
cut Painted Sand 

Blasted 
Sanded 

(240 Grit) 
Saw 
Cut 

Surface 
Ground 

Water-
Jet 
Cut 

Appendix 

RHA x … x x x … x … A 

Al 6061 x x x x x … x … B 

Ti 6Al-4V x … x x x … x … C 

Mg x x … x x … x … D 

Helmet 
Inside 

x … … … … … … … E 

Helmet 
Outside 

x … x … … … … … E 

SS II x … … … … x … x F 

HB-26 x … … … … x … x G 

Al2O3 x … … … … … … … H 

Polyethylene x … … … … x … … I 

Kevlar x … … … … … … x J 

Mild Steel … … … … … x … … K 

 

 

Fig. 4 Reflected power measurements as a function of incident/detection angle for RHA 
prepared with multiple surface-finishes 
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Fig. 5 Reflected power measurements as a function of incident/detection angle for Al 6061 
prepared with multiple surface-finishes 

 

 

Fig. 6 Reflected power measurements as a function of incident/detection angle for Ti 6AL 
4V prepared with multiple surface-finishes 
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Fig. 7 Reflected power measurements as a function of incident/detection angle for Mg 
AZ31B prepared with multiple surface-finishes 

 

 

Fig. 8 Illustration depicting differences between a specular reflector (left) and a diffuse 
reflector (right). Solid blue arrows portray incident light rays and dashed red arrows 
portray reflected light rays. 

In our tests, the metals prepared with relatively smooth, flat surface finishes 
(ground surface, machined, and sanded) reflected most of the light in a pattern 
that peaked when the light was incident and detected normally and reduced 
significantly as the angle of incidence and detection became more obtuse. This is 
in accordance with aforementioned hypothesis because the transmitter and 
detector are oriented at approximately the same location. At the off-normal 
incidences, a significant portion of the light is reflected to a position on the 
opposite side of the surface normal (specular), and only a small portion of light 
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from a diffuse component makes it back to the detector. These surface 
preparations would be preferred when attempting to make PDV measurements 
where normal incidences are accessible, because the total intensity of the Doppler 
shifted signal would be maximized. When the surfaces were prepared with more 
texture (sandblasted, painted, or typically as-is), the reflection was more diffuse in 
nature. This produced a greater retention of reflected power at obtuse angles, and 
therefore would be a preferred surface finish when trying to maximize reflected 
signal for measurements such as PDV, when non-normal incidences are required.  

Here we note one peculiarity—if the surface finish is prepared using a method 
that creates surface area at a preferred angle, the intensity of light reflected and 
detected will increase when the transmitter/detector pair is oriented at the 
complement of the angle in our test setup. This can be observed when the surface 
is prepared with a method such as machined with a fly cutter, which makes 
multiple triangular grooves on the surface. In both the Al 6061 and Mg surfaces 
prepared this way, the measured reflected power increased at an angle of 60–65°. 
Surface profilometry confirmed that the triangular grooves inscribed by this 
machining method had a 30° angle with respect to the surface normal. 

Figure 9 depicts a compilation of the reflected power measurements as a function 
of angle made on multiple metals prepared with sandblasted finishes. Because the 
sandblasted finishes produce similar surface textures on all materials (diffuse with 
random surface angles), and removes most surface impurities, comparison of the 
reflected signatures allows for an estimation of the relative reflection coefficient.  
This technique for estimating the reflection coefficient is in good agreement with 
the computed normal reflection, R, of elemental Al (97.8%), Fe (72.5%, the main 
constituent of RHA), and Ti (59.6%):8  

 𝑅𝑅 = �𝑛𝑛12−𝑛𝑛22�+𝑘𝑘22

(𝑛𝑛12+𝑛𝑛22)+𝑘𝑘22
   (2) 

where the n’s are the indices of refraction of the materials through which the 
electromagnetic wave propagates and k is the extinction coefficient of the 
reflecting medium. This technique provides a useful tool for estimating reflection 
coefficients for unique alloys and materials to which the indices of refraction and 
extinction coefficients are unknown. 
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Fig. 9 Reflected power measurements as a function of incident/detection angle for 
multiple surfaces prepared with sandblasted finishes. The trend in reflected power agrees 
well with the normal reflectance computed for elemental Al (97.8%), Fe (72.5%, the main 
constituent of RHA), and Ti (59.6%).8  

5. Conclusions 

This work described in this report measured the intensity of 1.55-μm light 
reflected from numerous materials prepared with varying surface finishes. The 
data can be used as a guide for conducting Photon Doppler Velocimetry 
measurements, which necessitates a prediction of the quantity of Doppler shifted 
light that will be reflected from a surface to optimize the measurement. It was 
observed in all cases that the power of reflected light could be sufficiently 
explained by applying the law of reflection coupled with a coefficient for the 
material’s reflection. Identifying the surface texture of the reflecting specimens 
can therefore approximate a prediction of the intensity of light reflected as a 
function of incident/detection-angle. Most importantly, this work includes 
appendixes of many common materials of varying surface preparations, a surface 
characterization, and the reflected power measurements as a function of angle. 
These conclusions and the applicability of the measurements are only valid for 
surfaces where accelerations are insufficient to cause the surface to yield or 
chemically change across its majority. 
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Appendix A.  RHA Reflected Power Measurements as a Function 
of Angle, Surface Profilometery, and Optical Photography at 

10-, 20-, and 40-Times Magnifications

                                                 
  This appendix appears in its original form, without editorial change. 
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Surface profilometry of RHA was acquired at two spots because of the significant 
texture variation across the surface, one that was deemed relatively rough as 
assessed by eye and one that was deemed relatively smooth as assessed by eye. 

 
Finish: As-is 

 
 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

7.352 8.928 26.96 0.0370 
4.840 5.971 16.46 .0331 
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Finish: Painted 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

6.836 8.328 16.96 .044 
3.514 4.38 8.171 .0250 

 



 

16 

Finish: Sandblasted 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

6.215 8.035 27.96 0.0279 
2.365 2.925 11.53 .0309 

 



 

17 

Finish: Sanded 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

2.561 3.023 8.25 .0213 
.581 .759 3.226 .0177 

 



 

18 

Finish: Ground Surface 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

1.090 1.570 8.609 .0129 
.512 .651 2.828 .0063 
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Appendix B.  Al 6061-T6 Reflected Power Measurements as a 
Function of Angle, Surface Profilometery, and Optical 
Photography at 10-, 20-, and 40-Times Magnifications

                                                 
  This appendix appears in its original form, without editorial change. 
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Surface profilometry of Al 6061 was acquired at two spots because of the 
significant texture variation across the surface, one that was deemed relatively 
rough as assessed by eye and one that was deemed relatively smooth as assessed 
by eye. 

Finish: As-is 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

4.049 5.134 20.42 .0563 
3.188 4.057 16.40 .0385 

 



 

21 

Finish: Machined (Fly Cutter) 
 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

1.993 2.459 9.175 .0502 
1.618 1.913 5.929 .0351 
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Finish: Painted 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

2.362 3.122 15.38 .0812 
2.255 2.891 10.60 .0686 

 



 

23 

Finish: Sandblasted 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

3.488 4.290 19.66 .0535 
4.108 4.915 14.71 .0453 

 



 

24 

Finish: Sanded 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

1.646 2.114 9.937 .0167 
.829 1.065 4.718 .0204 

 



 

25 

Finish: Ground Surface 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

0.771 0.997 4.433 .0226 
0.756 0.966 4.734 .0131 
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Appendix C.  Ti 6Al 4V Reflected Power Measurements as a 
Function of Angle, Surface Profilometery, and Optical 
Photography at 10-, 20-, and 40-Times Magnifications 

                                                 
  This appendix appears in its original form, without editorial change. 
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Surface profilometry of Ti 6Al 4V was acquired at two spots because of the 
significant texture variation across the surface, one that was deemed relatively 
rough as assessed by eye and one that was deemed relatively smooth as assessed 
by eye. 

Finish: As-is 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

6.142 7.481 24.76 .0547 
3.962 4.711 9.515 .0336 
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Finish: Painted 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

2.710 3.611 18.55 .0839 
3.076 3.992 13.39 .0594 
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Finish: Sandblasted 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

2.843 3.776 21.21 .0493 
3.023 3.634 14.42 .0328 
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Finish: Sanded 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

.0512 .638 2.867 .0079 
.535 .686 3.234 .0078 
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Finish: Ground Surface  

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

.830 1.050 3.585 .0188 

.591 .812 3.515 .0171 
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Appendix D.  Mg AZ31B Reflected Power Measurements as a 
Function of Angle, Surface Profilometery, and Optical 
Photography at 10-, 20-, and 40-Times Magnifications 
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Surface profilometry of Mg AZ31B was acquired at two spots because of the 
significant texture variation across the surface, one that was deemed relatively 
rough as assessed by eye and one that was deemed relatively smooth as assessed 
by eye. 

Finish: As-is 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

1.248 1.724 5.554 .0425 
1.005 1.342 5.773 .0404 
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Finish: Machined (Fly Cutter) 
 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

0.698 .860 2.914 .0367 
.790 .912 2.96 .0065 
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Finish: Sandblasted 
 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

4.768 6.039 18.33 .0493 
5.714 7.512 22.0 .0451 
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Finish: Sanded 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

1.017 1.267 5.484 .0252 
.975 1.253 5.992 .0238 
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Finish: Ground Surface  
 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

0.505 0.623 2.437 .0068 
.379 .532 1.554 .0174 
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Appendix E.  Helmet Reflected Power Measurements as a 
Function of Angle, Surface Profilometery, and Optical 
Photography at 10-, 20-, and 40-Times Magnifications 
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Finish: Inside As-is 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (µm) 

3.476 4.355 12.09 .0540 
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Finish: Outside As-is (painted) 

 

  
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

3.751 4.675 18.08 .0267 
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INTENTIONALLY LEFT BLANK. 
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Appendix F. Spectra Shield II Reflected Power Measurements as 
a Function of Angle, Surface Profilometery, and Optical 
Photography at 10-, 20-, and 40-Times Magnifications  

                                                 
  This appendix appears in its original form, without editorial change. 
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Finish: As-is (pressed) 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

1.880 2.359 10.04 .0313 
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Finish: Saw Cut 

 

  
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

3.470 4.229 10.89 .0727 
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Finish: Waterjet Cut 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

3.864 4.770 12.00 .0678 
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Appendix G. Dyneema HB-26 Reflected Power Measurements as 
a Function of Angle, Surface Profilometery, and Optical 
Photography at 10-, 20-, and 40-Times Magnifications  
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Finish: As-is (pressed) 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

1.871 2.264 7.562 .0843 
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Finish: Saw Cut 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

2.051 2.667 12.29 .0553 
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Finish: Waterjet Cut  

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

4.168 4.842 11.20 .0379 
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Appendix H. Al2O3 Reflected Power Measurements as a Function 
of Angle, Surface Profilometery, and Optical Photography  

at 10-, 20-, and 40-Times Magnifications  

                                                 
  This appendix appears in its original form, without editorial change. 
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Finish: As-is 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

0.856 1.093 4.312 .0183 
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Appendix I. Polyethylene Reflected Power Measurements as a 
Function of Angle, Surface Profilometery, and Optical 
Photography at 10-, 20-, and 40-Times Magnifications  

                                                 
  This appendix appears in its original form, without editorial change. 
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Finish: As-is (extruded) 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

0.293 0.502 2.828 .1508 
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Finish: Saw Cut 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

9.493 11.68 35.21 .1328 
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INTENTIONALLY LEFT BLANK. 
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Appendix J. Kevlar Reflected Power Measurements as a Function 
of Angle, Surface Profilometery, and Optical Photography at 

10-, 20-, and 40-Times Magnifications  

                                                 
  This appendix appears in its original form, without editorial change. 
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Finish: As-is (pressed) 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

8.057 9.812 35.28 .0807 
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Finish: Waterjet Cut 

 

 
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

NA NA NA NA 
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INTENTIONALLY LEFT BLANK. 
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Appendix K. Mild Steel Reflected Power Measurements as a 
Function of Angle, Surface Profilometery, and Optical 
Photography at 10-, 20-, and 40-Times Magnifications  
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Finish: Cut (Lathe) 

 

  
Ra (µm) Rq (µm) Rz (µm) Rs (mm) 

0.856 1.025 3.117 .0284 
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INTENTIONALLY LEFT BLANK. 


